3.878 \(\int \frac {\sqrt {\cos (c+d x)} (B \cos (c+d x)+C \cos ^2(c+d x))}{a+b \cos (c+d x)} \, dx\)

Optimal. Leaf size=137 \[ \frac {2 a^2 (b B-a C) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 d (a+b)}-\frac {2 \left (-3 a^2 C+3 a b B-b^2 C\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 b^3 d}+\frac {2 (b B-a C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac {2 C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d} \]

[Out]

2*(B*b-C*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b^2/d-2/3*(3
*B*a*b-3*C*a^2-C*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/b^
3/d+2*a^2*(B*b-C*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^
(1/2))/b^3/(a+b)/d+2/3*C*sin(d*x+c)*cos(d*x+c)^(1/2)/b/d

________________________________________________________________________________________

Rubi [A]  time = 0.60, antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {3029, 2990, 3059, 2639, 3002, 2641, 2805} \[ -\frac {2 \left (-3 a^2 C+3 a b B-b^2 C\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 b^3 d}+\frac {2 a^2 (b B-a C) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 d (a+b)}+\frac {2 (b B-a C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac {2 C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cos[c + d*x]]*(B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a + b*Cos[c + d*x]),x]

[Out]

(2*(b*B - a*C)*EllipticE[(c + d*x)/2, 2])/(b^2*d) - (2*(3*a*b*B - 3*a^2*C - b^2*C)*EllipticF[(c + d*x)/2, 2])/
(3*b^3*d) + (2*a^2*(b*B - a*C)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(b^3*(a + b)*d) + (2*C*Sqrt[Cos[c +
d*x]]*Sin[c + d*x])/(3*b*d)

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2990

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x]
)^(n + 1))/(d*f*(m + n + 1)), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x
])^n*Simp[a^2*A*d*(m + n + 1) + b*B*(b*c*(m - 1) + a*d*(n + 1)) + (a*d*(2*A*b + a*B)*(m + n + 1) - b*B*(a*c -
b*d*(m + n)))*Sin[e + f*x] + b*(A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*Sin[e + f*x]^2, x], x], x] /; F
reeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m,
1] &&  !(IGtQ[n, 1] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3029

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])
^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {\cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx &=\int \frac {\cos ^{\frac {3}{2}}(c+d x) (B+C \cos (c+d x))}{a+b \cos (c+d x)} \, dx\\ &=\frac {2 C \sqrt {\cos (c+d x)} \sin (c+d x)}{3 b d}+\frac {2 \int \frac {\frac {a C}{2}+\frac {1}{2} b C \cos (c+d x)+\frac {3}{2} (b B-a C) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{3 b}\\ &=\frac {2 C \sqrt {\cos (c+d x)} \sin (c+d x)}{3 b d}-\frac {2 \int \frac {-\frac {1}{2} a b C+\frac {1}{2} \left (3 a b B-3 a^2 C-b^2 C\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{3 b^2}+\frac {(b B-a C) \int \sqrt {\cos (c+d x)} \, dx}{b^2}\\ &=\frac {2 (b B-a C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac {2 C \sqrt {\cos (c+d x)} \sin (c+d x)}{3 b d}+\frac {\left (a^2 (b B-a C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{b^3}-\frac {\left (3 a b B-3 a^2 C-b^2 C\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 b^3}\\ &=\frac {2 (b B-a C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}-\frac {2 \left (3 a b B-3 a^2 C-b^2 C\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 b^3 d}+\frac {2 a^2 (b B-a C) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 (a+b) d}+\frac {2 C \sqrt {\cos (c+d x)} \sin (c+d x)}{3 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.44, size = 207, normalized size = 1.51 \[ \frac {\frac {3 (b B-a C) \sin (c+d x) \left (\left (b^2-2 a^2\right ) \Pi \left (-\frac {b}{a};\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) F\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )\right )}{a b^2 \sqrt {\sin ^2(c+d x)}}+\frac {(3 b B-a C) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a+b}+C \left (2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )-\frac {2 a \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a+b}\right )+2 C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a + b*Cos[c + d*x]),x]

[Out]

(((3*b*B - a*C)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + C*(2*EllipticF[(c + d*x)/2, 2] - (2*a*Ell
ipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b)) + 2*C*Sqrt[Cos[c + d*x]]*Sin[c + d*x] + (3*(b*B - a*C)*(-2*a*
b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2
+ b^2)*EllipticPi[-(b/a), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b^2*Sqrt[Sin[c + d*x]^2]))/(3*b*d)

________________________________________________________________________________________

fricas [F]  time = 155.26, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )}}{b \cos \left (d x + c\right ) + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + B*cos(d*x + c))*sqrt(cos(d*x + c))/(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )}}{b \cos \left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sqrt(cos(d*x + c))/(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

maple [B]  time = 2.88, size = 786, normalized size = 5.74 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c)),x)

[Out]

2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*((-4*C*a*b^2+4*C*b^3)*cos(1/2*d*x+1/2*c)*sin(1/2*d
*x+1/2*c)^4+(2*C*a*b^2-2*C*b^3)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+3*a^2*b*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*B*a*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*si
n(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2-3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*si
n(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^3-3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(
1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*a^2*b-3*C*a^3*(sin(1/2*d*x+1/2*c)^
2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*C*a^2*b*(sin(1/2*d*x+1/2*c)^
2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-C*a*b^2*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+b^3*C*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*
sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b+3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*
sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2+3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*
sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*a^3)/b^3/(a-b)/(-2*sin(1/2*d*x
+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )}}{b \cos \left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sqrt(cos(d*x + c))/(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )\right )}{a+b\,\cos \left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(1/2)*(B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + b*cos(c + d*x)),x)

[Out]

int((cos(c + d*x)^(1/2)*(B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + b*cos(c + d*x)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)*(B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+b*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________